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A numerical study of detonation diffraction
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An investigation of detonation diffraction through an abrupt area change has been
carried out via a set of two-dimensional numerical simulations parameterized by the
activation energy of the reactant. Our analysis is specialized to a reactive mixture
with a perfect gas equation of state and a single-step reaction in the Arrhenius form.
Lagrangian particles are injected into the flow as a diagnostic tool for identifying
the dominant terms in the equation that describes the temperature rate of change
of a fluid element, expressed in the shock-based reference system. When simplified,
this equation provides insight into the competition between the energy release rate
and the expansion rate behind the diffracting front. The mechanism of spontaneous
generation of transverse waves along the diffracting front is carefully analysed and
related to the sensitivity of the reaction rate to temperature. We study in detail
three highly resolved cases of detonation diffraction that illustrate different types of
behaviour, super-, sub- and near-critical diffraction.

1. Introduction
Detonations are supersonic combustion waves with a strong lead shock front. The

shock wave ignites the reactive material, and the exothermic stage of the reactions
creates volume expansion that pushes the shock into fresh reactants. Detonations
diffracting from a planar to a cylindrical (or spherical) geometry through an abrupt
area change experience expansion waves that propagate into the partially burnt
reactants behind the wavefront.

One of the key features of this process is the propagation of the signal generated by
the expansion waves emanating at the corner. As shown in figure 1(a), the disturbance
is propagating at the local acoustic speed c while being convected downstream at
a speed u. The undisturbed front moves at a constant speed D. The angle between
the disturbance trajectory and the normal of the undiffracted shock, α, can be found
by carrying out a Huygen’s construction for the wavefront of a sound wave. As
discussed in Skews (1967), the wavefront is a circle, of radius c � t , whose origin is at
point O translated downstream from the corner a distance u � t . From the geometric
construction, we have

tan α =
v

D
=

√
c2 − (D − u)2

D
. (1.1)

In the non-reactive case, the values u and c are evaluated from the post-shock state
behind the undisturbed shock. In the reactive case, a finite transverse signal speed is
observed in corner-turning experiments with Chapman–Jouguet (CJ) detonations
(Schultz 2000). This indicates that acoustic disturbances must propagate in the
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Figure 1. (a) Schematic of a diffracting shock (Skews’ construction) in non-reactive gas.
(b) Disturbance angle plotted vs. progress variable Z for a ZND-CJ detonation. Z = 0
corresponds to post-shock conditions, Z = 1 corresponds to the end of the reaction zone.

reaction zone, between the sonic plane (where D − u = c by definition) and the
lead shock. Disturbance angles α were measured by Schultz (2000) from a sequence
of schlieren images in sub-critical detonation diffraction of hydrocarbon mixtures
and hydrogen mixtures. When these results were compared with values computed
from the corresponding Zel’dovich–von Neumann–Doering (ZND) profiles (see, for
instance, figure 1b), the angles corresponding to the maximum disturbance velocity
were found to be in good agreement with the experimental measurements.

The sensitivity of chemical reactions to post-shock conditions is the second key
feature in detonation diffraction. For a single-step reaction model of order nr , the
rate of reaction of a fluid particle can be described by

DZ

Dt
= k ρnr −1 (1 − Z) exp(−θ TvN/ T ), (1.2)

where Z monitors the reaction progress (from 0 to 1), ρ is the density, TvN is the
von Neumann temperature in the ZND profile, and k is a proportionality parameter
setting the length scale of energy release. The sensitivity of the chemical kinetics is
expressed in the nonlinear term by the reduced activation energy θ , the key parameter
in the work presented here.

Since the shock is weakened by the interaction with expansion waves from the
corner, the post-shock temperature can be significantly smaller along the diffracting
front than in the reference ZND profile, and the reaction process can be quenched or
substantially delayed. If the reaction does not take place or else happens far behind the
shock front, the reduced amount of energy released into the flow results in a further
decay of the detonation speed. As the shock strength diminishes, incoming reactants
are less compressed, and this, in turn, increases the ignition delay. Depending on the
sensitivity of the reactions to temperature and density changes and on the strength of
the rarefaction, the detonation will eventually either be re-established (super-critical
diffraction) or cease to propagate (sub-critical diffraction). The conditions that control
the transition from super-critical to sub-critical diffraction identify the near-critical
state. With all other conditions held constant, the detonation fails for a tube diameter
smaller than a critical value (Zel’dovich, Kogarko & Simonov 1956).
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Figure 2. Detonation diffraction around a corner. – . –, the plane of symmetry of the channel;
H , the channel half-width. Also shown are the distances measured along the plane of symmetry,
xa , and along the corner wall, yw .

There is an empirical correlation between critical diameter and detonation cell
width, λ (Mitrofanov & Soloukhin 1965; Edwards, Thomas & Nettleton 1979;
Knystautas, Lee & Guirao 1982; Moen et al. 1982; Shepherd et al. 1986; Desbordes
1988). The survey by Guirao, Knystautas & Lee (1987) for hydrogen–air mixtures
indicates that detonation is re-established if the tube diameter is greater than 13 λ.
For rectangular orifices with large aspect ratio, the detonation is re-established if the
smallest side of the orifice is larger than 3 λ. A recent review of the available detonation
diffraction literature can be found in Schultz (2000). Despite the large amount of
experimental data, a quantitative theory to predict the critical tube diameter is still
lacking.

In two dimensions, an extensive series of simulations with two-step reaction kinetics
was performed by Jones et al. (1990, 1991, 1995) and Oran et al. (1992, 1993). Their
aim was to reproduce the diffracting patterns in detonation transmission experiments
by Liu et al. (1987, 1988). The role of detonation cellular structure in detonation
diffraction was further investigated by Jones et al. (1996, 2000) and Li & Kailasanath
(2000), through simulations that were found in agreement with the 3 λ rule. In three
dimensions, computations with single-step Arrhenius kinetics were carried out by
Williams, Bauwens & Oran (1996). Their results suggest that vorticity, providing a
strong coupling mechanism between perpendicular transverse modes, can be a trigger
mechanism for the production of new transverse waves.

In the problem we investigated, detonation diffraction takes place around a sharp
corner with an interior angle of 90◦ (figure 2). An instance of this situation is encoun-
tered when a detonation tube or channel opens into a larger volume. If we assume an
unbounded volume, then the only geometric parameter is the exit diameter of the tube,
or, in two dimensions, the channel half-width, H . Dimensional analysis for the single-
step reaction model in the Arrhenius form leads to the following dependence for the
critical channel half-width,

Hc

∆1/2

= g

(
Q

RgT0

, γp, γr, f, θ, nr

)
, (1.3)

where Q is the heat of reaction, γr and γp are the reactant and product specific heat
ratios, and f = D/DCJ is the overdrive of the detonation in the channel. Rg is the
mixture gas constant and T0 is the uniform temperature ahead of the shock. The
reaction characteristic length, ∆1/2, is defined as the distance, in the reference ZND
wave, between the shock (Z = 0) and the point where Z = 1/2. Our study is further
specialized by setting f = 1, γp = γr and nr = 2. The reference reduced activation
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Figure 3. (a) Intrinsic coordinates ξ and η for an arbitrary front, and (b) specialized
to a cylindrical front.

energy θ is normalized by the von Neumann temperature at CJ conditions and is
labelled θCJ.

The concept of shock decoupling from the reaction zone is the simplest idea used
to explain the behaviour of a diffracting detonation front. In § 2, we extend to an
arbitrary wavefront the equation framework used in the study of direct initiation of
spherically symmetric detonations by Eckett, Quirk & Shepherd (2000). The numerical
implementation of the equations of fluid motion, and the algorithms used for flow
diagnostics, are described in § 3. In § 4, we examine three cases of detonation diffraction
that illustrate different types of behaviour, super-, sub- and near-critical diffraction.
The results are discussed in § 5.

2. Reaction zone structure equations
2.1. Governing equations

Ignoring viscosity, heat transfer, diffusion, radiation and body forces, the governing
equations for a compressible reacting flow are the reactive Euler equations completed
by a thermal equation of state (see, for instance, Fickett & Davis 1979). The equation
of state for a mixture of perfect gases is written in non-dimensional form as

P = ρT . (2.1)

Variables are non-dimensionalized by taking the uniform conditions upstream of the
shock as a reference. From this point onward, dimensional variables are indicated
by a tilde. Distance is scaled by ∆̃1/2, and velocity is scaled by the reference particle

velocity ũ0 = (R̃gT̃ 0)
1/2. The mixture gas constant is

R̃g =
R̃
W̃

= R̃
∑ yK

W̃K

. (2.2)

W̃K and yK are the molar mass and the mass fraction of species K , R̃ is the universal
gas constant, and W̃ is the mixture molar mass. The non-dimensional activation
energy is Ea = θ TvN .

In two dimensions, the analysis of the Euler equations can be carried out by using
intrinsic shock-based coordinates as independent variables. While more cumbersome
than the Cartesian description, this approach allows for the study of the reaction zone
structure in terms of local flow features, such as shock curvature. The description of
the reactive Euler equations in intrinsic coordinates is essential to this work, and it
is, therefore, developed in some length in this section.

In intrinsic coordinates (figure 3), the variable ξ measures the arclength of the lead
shock from a reference point. This point has coordinates (x0, y0) in the x–y fixed
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Cartesian reference system. Along the shock, the second coordinate η is constant
and equal to zero. Lines of constant η are the loci of points with the same distance
from the shock. The angle φ between the normal to the front and a reference axis,
is a dependent variable, φ(ξ, t). The two-dimensional curvature of the front, κ , is, by
definition, κ = (∂φ/∂ξ )η, t . Dn is the detonation velocity normal to the front. As an
example of an intrinsic coordinate system, figure 3(b) shows the particular case of a
cylindrical front with radius R(t). In this simple situation, the relation between ξ and
η and the cylindrical coordinates (r and φ) is given by ξ = (φ − φ0) R and η = R − r ,
and the trivial result κ = 1/R is found.

Conservation of mass, momentum and total energy can be written in intrinsic
coordinates as (Bdzil & Aslam 2000),

L(ρ) + [(Dn − uη)ρ],η + ρ
uηκ + uξ,ξ

1 − η κ
= 0, (2.3a)

L(uη) + (Dn − uη)uη,η =
P,η

ρ
− uξ (Dn,ξ − uξκ)

1 − η κ
, (2.3b)

L(uξ ) + (Dn − uη)uξ,η = −P,ξ + ρuη(uξκ − Dn,ξ )

ρ(1 − η κ)
, (2.3c)

L(e) + (Dn − uη)e,η =
P

ρ2
[L(ρ) + (Dn − uη)ρη], (2.3d)

where t is time and P and e are pressure and specific internal energy. The variables uη,
uξ are the particle velocity components in the shock normal and transverse direction.
We use the notation, ξ and, η to indicate a partial derivative with respect to ξ and η,
in this order. The operator L is defined as

L =
∂

∂t

∣∣∣∣
ξ,η

+

(
B +

uξ − ηDn,ξ

1 − η κ

)
∂

∂ξ

∣∣∣∣
t,η

. (2.4)

Note that, since the intrinsic reference system is time varying, the shock-based partial
time derivative differs from the partial time derivative evaluated in a fixed reference.
In (2.4), B is the rate of change in arclength with respect to a fixed axis of reference
as measured by an observer that is always moving in the shock normal direction
(Bdzil & Stewart 1989). The Lagrangian derivative, computed along the path of a
fluid element, can be expressed as

D/Dt = L + (Dn − uη) ∂/∂η. (2.5)

For N species, the rate of change of species K of a fluid element is

DyK

Dt
= ΩK, (2.6)

with the index K varying between 1 and N . Using simple thermodynamic relations, the
energy equation (2.3d) may be replaced by the adiabatic change equation (Fickett &
Davis 1979),

DP

Dt
= c2 Dρ

Dt
+ ρc2

∑
K

σKΩK, (2.7)

where c is the frozen sound speed. The sum of the thermicity coefficients σK in (2.7)
expresses the total pressure change due to chemical reaction at constant volume, and
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is called the thermicity product σ̇ ,

σ̇ =
∑
K

σKΩK. (2.8)

In this work, we specialize the reaction model to a one-step irreversible reaction,
A → B, where the upstream fluid is undiluted species A. The reactant and product are
taken to have the same specific heat ratio γ . The specific internal energies of species
A and B are

eA = CvT , eB = CvT − Q, (2.9)

where Cv is the gas specific heat at constant volume. The caloric equation of state is

e =
1

γ − 1
T − ZQ. (2.10)

The progress variable Z is defined as the mass fraction of product B, Z = yB = 1 − yA,
the thermicity is

σ̇ = (γ − 1)
Q

c2

DZ

Dt
, (2.11)

and the reaction rate is given by (1.2).

2.2. The Lagrangian derivative of temperature

Since realistic reaction rates are strongly temperature dependent, the Lagrangian
derivative of temperature, DT/Dt , is of particular interest when considering the
possibility of detonation failure. By taking the Lagrangian derivative of (2.1), and
using the adiabatic change equation (2.7) together with the mass and momentum
equations in (2.3), we find the temperature reaction zone structure equation(

1 −
w2

η

c2

)
Cp

DT

Dt
=

1

γ − 1

(
c2 − γw2

η

)
σ̇ + w2

η

κ(Dn − wη)

1 − η κ

+ wη(Dn − wη),t +
P,t

ρ
+ w2

η

wξ,ξ

1 − ηκ
− wη

w2
ξ κ

1 − ηκ

+
wξ

1 − ηκ

(
−wηwη,ξ +

P,ξ

ρ

)
+ B

(
wη(Dn − wη),ξ +

P,ξ

ρ

)

− ηDn,ξ

1 − ηκ

(
wη(Dn − wη),ξ +

P,ξ

ρ

)
+ wξwη

2 Dn,ξ

1 − ηκ
(2.12)

with wη = Dn − uη and wξ = uξ . Cp is the mixture specific heat at constant pressure,
Cp = γ /(γ −1). Equation (2.12) has the dimension of energy density per unit time. The
right-hand side has terms depending on the thermicity product, the shock curvature,
the partial time derivatives of the flow, the transverse divergence wξ,ξ , and a term
in w2

ξ κ that has the appearance of work associated with centripetal motion. The
remaining terms in the last two rows of (2.12) are more difficult to interpret.

The two terms containing a partial time derivative in the intrinsic reference frame
can be grouped together, and, for the remainder of this work, they will be referred to
as ‘unsteady terms’ or ‘unsteadiness’ of the fluid particle. Note that in a decelerating
wave, such as occurs in detonation diffraction, the unsteady terms are always negative.
Thus, the reaction may quench if the wave is decelerating too rapidly.

If the plane of reference is also a plane of symmetry for the flow field, several terms
disappear at ξ = 0. The transverse derivatives vanish, with the exception of wξ,ξ , and
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we obtain(
1 −

w2
η

c2

)
Cp

DT

Dt
=

1

γ − 1

(
c2 − γw2

η

)
σ̇ + w2

η

κs(Ds − wη)

1 − ηκs

+ wη(Ds − wη),t +
P,t

ρ
+ w2

η

wξ,ξ

1 − ηκs

. (2.13)

In (2.13), κs(t) and Ds(t) are the front curvature and shock speed evaluated on the
plane of symmetry. The result is the same as that found for a cylindrically symmetric
flow with the addition of a transverse divergence term (Eckett et al. 2000). This term
is always positive since wξ is anti-symmetric and no mass flux is allowed at the plane
of symmetry. Note that, when the wavefront is convex-upstream, the curvature term
is also positive in (2.13) and so it cannot possibly be a source of reaction quenching
without the additional presence of unsteadiness.

The relative size and behaviour of the terms in the temperature reaction zone
structure equation will be examined numerically by following the path of massless
particles injected into the flow. We will refer to these particles as Lagrangian. The
goal is to identify the dominant balance in a Lagrangian particle close to ignition
failure and to find any simplifying assumption regarding the behaviour of terms in
(2.12) or (2.13).

3. Numerical implementation
The reactive Euler equations are integrated via operator splitting as an alternated

sequence of convective and reaction source steps (Strang 1968). In the convective
step, numerical fluxes are computed with Roe’s approximate solution of the Riemann
problem (Roe 1986). Formal second-order spatial accuracy is obtained via min-
mod flux limiting, and the scheme is made entropy-satisfying with Harten’s entropy
fix (Harten 1983). In the reaction source step, at ρ and e constant, the ordinary
differential equation

dZ

dt
= kρ (1 − Z) exp(−Ea/T ) (3.1)

is integrated by a second-order time-accurate predictor–corrector scheme. Verification
of results and the detailed description of the one-dimensional solver can be found
in Eckett (2001). The scheme is extended to two dimensions via standard dimension-
by-dimension integration, and is marched in time with the forward Euler integration
scheme.

To accelerate the program execution time, the solver is embedded in the Grid
Hierarchy Adaptive Computational Engine library, or GrACE (Parashar et al. 1997;
Parashar & Browne 2000). This parallel library operates on partitions of the
computational domain that are assigned to different CPUs of a multi-processor
computer. Communication between processors is based on the Message Passing
Interface (MPI) protocol (see, for instance, Snir et al. 1996).

A schematic diagram of the computational domain is shown in figure 2. For
simplicity, a zero-gradient condition is imposed on the flow variables at the inlet (left-
hand boundary), even if the flow, initially at CJ conditions, becomes subsonic when
the rarefaction signal from the corner moves upstream. The length of the channel
is 0.9H so that the corner expansion is protected from perturbations coming from
the inlet in the early phases of detonation diffraction. Reflective boundary conditions
are implemented at the plane of symmetry (top boundary) and the simulation is
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θCJ 0.0 1.0 2.0 2.5 3.0 3.5 3.75 4.15

k 0.2013 0.3931 0.7757 1.077 1.551 2.204 2.632 3.509

Table 1. Normalized activation energy and proportionality factor.

terminated before the detonation front exits the domain at the right-hand and bottom
boundaries.

To remove the singularity introduced in an Euler (inviscid) flow around a
sharp corner, the vertex is described by 128 segments as a polygonal boundary,
approximating a rounded corner with radius of curvature rc = 1. The ghost-fluid
coupling scheme is used to model the correct reflective boundary conditions at the
wall, solving the issue of Cartesian cells that are cut by the polygonal boundary. An
extensive description of this level-set based technique can be found in Arienti et al.
(2003) in the context of the solution of dynamic fluid–solid coupling problems with
complex interfaces. The details of the actual corner shape are, however, unimportant
since it is found that, for a sufficiently small radius (compared to the reference reaction
length), the flow field is affected only within a distance of a few multiples of rc from
the corner (Arienti 2002).

At time t = 0, the initial solution is a planar ZND-CJ wave travelling from left to
right in the inlet channel. The reference state ahead of the shock is P̃ 0 = 24 kPa and
T̃ 0 = 298 K. The specific heat ratio, γ = 1.22, and gas constant, R̃g =274.4 J kg−1 K−1,
are estimated for stoichiometric oxyacetylene. These properties and the CJ detonation
speed, D̃CJ =2346.1 m s−1 (corresponding to the Mach number 7.422 and the
non-dimensional value DCJ = 8.204), were evaluated with the program STANJAN
(Reynolds 1986). The non-dimensional energy release is Q = 65.81. To compare
consistently the wave profiles computed for different values of θCJ, the proportionality
parameter k in the reaction rate formula (3.1) is adjusted so that ∆̃1/2 is the same in
all the simulations (see table 1 for a list of values).

An important part of the numerical results that are presented in this work
depends on the correct tracking of the detonation front; see Appendix A for more
details. Particular care is required to control the error associated with time and
space derivatives of the estimated lead shock position. This error is due to the
necessary use of interpolation in the shock-tracking procedure and to high-frequency
solution oscillations that occur when the wavefront crosses the interface between
computational cells.

A second analysis tool is provided by the massless particles that are injected into
the flow to register the thermodynamic state and velocity of the surrounding fluid. At
each time step, these particles are first advected by the flow-field solution and then
used to interpolate the flow-field variables and gradients at their current location.
Each particle data stream is separately stored to be post-processed at the end of the
simulation. More details on this procedure can be found in Appendix B.

4. Activation energy studies
The reduced activation energy θCJ is the key parameter determining the dynamics

of a combustion system described by a one-step Arrhenius rate model. Large values
of θCJ result in a chemical reaction rate that is very sensitive to changes in the
thermodynamic state. Small values of θCJ result in a chemical reaction rate that is
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Figure 4. Detonation velocity at the plane of symmetry, Da , as a function of the distance
measured from the vertex, xa . The labels are values of the reduced activation energy θCJ,
varying from 0 to 4.15.

almost independent of changes in the thermodynamic state. As a consequence, the
diffraction behaviour of detonations modelled with an Arrhenius rate law can vary
widely depending on the magnitude of the activation energy. In the present study,
a range of values has been examined in order to map out the possible types of
diffraction behaviour that can occur with a fixed ratio of reaction zone length to
channel height.

Two types of study were carried out. First, a set of coarse-resolution simulations
was performed for eight values of θCJ between 0 and 4.15. Secondly, a set of high-
resolution simulations was carried out for three selected cases with reduced activation
energies of 1, 3.5 and 4.15. All of these simulations were performed with an initially
planar ZND wave travelling at the CJ speed before diffracting around the corner.
Normal mode stability analysis (Lee & Stewart 1990) indicates that the neutral
stability curve for one-dimensional CJ detonations asymptotes to a constant value
θCJ

∼= 4.74 for sufficiently large Mach numbers (MCJ > 6). Our simulations lie entirely
within the range of one-dimensional hydrodynamic stability, allowing the study of
purely gasdynamic quenching mechanisms in detonation diffraction.

Computations were carried out over a sufficiently long time to determine the
ultimate fate of the detonation wave. The half-width H of the channel in these
simulations was fixed at 36.67 reaction half-lengths.

The coarse-resolution studies were performed with 16 grid points per half-reaction
zone length, N1/2 = 16. This resolution level was convenient since it enabled a complete
simulation (on a 4824 by 3752 grid) to be performed in less than 36 wall-clock hours
on 48 processors (Pentium III, 1GHz with 1 GB of RAM) of the ASAP Linux cluster
in the Centre for Advanced Computing Research (CACR) at Caltech.

4.1. Coarse-resolution studies

The histories of the shock detonation speeds, Da and Dw (shown in figure 2), are plot-
ted as a function of position in figures 4 and 5. In figure 4, the shock speed on the
plane of symmetry remains constant until the first expansion wave reaches the centre
of the channel at about 90 half-reaction lengths from the corner vertex location. The
expansion causes the shock speed to decay in all cases, but the long-time behaviour
is different depending on the values of reduced activation energy.
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Figure 5. Detonation velocity at the corner wall, Dw , as a function of the distance from the
vertex, yw . The labels are values of the reduced activation energy θCJ, varying from 0 to 4.15.

In figure 5, the shock speed at the wall drops instantly, since the flow around the
corner immediately affects the shock front. The very low pressure in the corner region
causes the shock to propagate at much lower velocity along the wall than along the
plane of symmetry. Overall, in this initial phase of corner diffraction, the behaviour
of diffracting detonations is very similar to that observed with non-reacting shock
waves.

For longer times, two extreme types of behaviour can be noted for low activation
energy and high activation energy. These behaviours resemble the super-critical (low
activation energy) and sub-critical (high activation energy) diffraction cases observed
in experimental studies of diffraction from tubes. In addition, the cases of intermediate
activation energy appear to be similar to the critical case of diffraction from tubes. It
is important to keep in mind two key differences between experiments and the present
simulations. First, the reduced activation energy is between 4 and 7 for most fuel–
oxidizer combinations (Schultz 2000). Secondly, there are always transverse waves
present on the detonation prior to reaching the corner so the correspondence between
experiment and present simulations is necessarily inexact. More realistic computations
are required in future studies to examine the influence of these two factors.

4.1.1. Low activation energy

For 0 � θCJ � 1, the reaction rate is essentially independent of the thermodynamic
state so that the reaction zone length is unaffected by the shock velocity. Since the
reaction rate is nearly constant, the detonation will always accelerate after diffraction,
reaching the CJ velocity far from the corner. This is similar to the case of super-critical
diffraction that is observed in diffraction experiments (Schultz 2000) where the tube
is larger than the critical size required for successful detonation transmission.

Upon examination of figures 4 and 5, a simple picture of the low-activation-energy
case emerges. The detonation velocity initially decreases owing to the expansion waves
created by the flow around the corner, yet, after the initial decay, the wave accelerates
and eventually approaches the CJ velocity at a large distance from the corner. The
velocity on the plane of symmetry drops slowly to about 88 % of the CJ velocity and
then begins to recover after propagating to 200 half-reaction lengths along the plane
of symmetry (figure 4). The velocity on the wall drops immediately to 40 % of the CJ
value and recovers to about 80 % of CJ by the time the shock has propagated 200
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half-reaction lengths along the wall (figure 5). The magnitude of the drop in the shock
velocity and the rate of acceleration are associated with the competition between the
gasdynamic expansion created by corner flow and the energy release immediately
behind the shock.

4.1.2. High activation energy

For 3.75 � θCJ � 4.15, the reaction rate is strongly dependent on the thermodynamic
state so that the reaction zone length increases rapidly when the shock speed decreases.
This causes the reaction zone to decouple from the shock wave, and the reaction rate to
essentially drop to zero, after a short distance from the corner vertex. The detonation
fails completely and the resulting flow is essentially a non-reactive shock wave.
This is similar to the case of sub-critical diffraction that is observed in diffraction
experiments where the tube is smaller than the critical size required for successful
detonation transmission (Schultz 2000).

Examining figures 4 and 5, we find that there is also a simple pattern of behaviour
for this case. The wave velocity on both the plane of symmetry and the wall decreases
continuously and reaches very low values, less than 50 % of the CJ value at 200–250
half-reaction lengths from the corner vertex. The dynamics of the wave propagation
are essentially those of a non-reactive shock, and the approximate method of Whitham
(1974) can be used to find the evolution of the front.

4.1.3. Intermediate activation energy

For 2.5 � θCJ � 3.5, the reaction rate is moderately dependent on the thermodynamic
state. The reaction zone length increases as the shock decays, but the accelerating
effects of energy release are sufficient to cause the reaction zone length to decrease
ultimately in an abrupt fashion. This gives the appearance of a re-ignition event near
the wall (figure 5) that propagates back to the centre of the channel. This is similar
to the case of critical diffraction that is observed in diffraction experiments where the
tube is comparable to the critical size required for successful detonation transmission
(Schultz 2000).

The axial and wall velocities show an initial decay to a velocity higher than that
observed in the high-activation-energy cases, followed by an acceleration back to
velocities similar to the low-activation-energy cases. The acceleration is abrupt at the
wall, but more gradual on the plane of symmetry. This is related to the mechanism
of transition, discussed in more detail below.

Another way to analyse the flow near the channel centre is to plot wave speed vs.
curvature (figure 6). A unique Dn–κ relationship should result if the flow is quasi-
steady in nature (Bdzil & Stewart 1989; Yao & Stewart 1995; Stewart & Yao 1998).
Although the curves of figure 6 have a backward C-shape, their numerical values can
be very different from those in the corresponding Dn–κ curves. These differences are
reported in detail in Arienti (2002).

4.2. High-resolution studies

Following the results of the coarse-resolution studies, more detailed simulations
were performed for selected cases at high resolution. The need for highly resolved
computations is crucial in the study of detonation diffraction. When the reaction zone
is under-resolved, direct numerical simulations tend to overestimate the wavefront
curvature (Menikoff, Lackner & Bukiet 1996), and poor predictions of detonation
wave structure can be expected (Sharpe 2001). The following three simulations were
computed with N1/2 = 22.5 on a 6570 × 5858 grid for θCJ = 1 and 3.5, and on a
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Figure 6. Detonation velocity–curvature (Dn–κ) diagram at the plane of symmetry of the
channel. The labels are values of the reduced activation energy θCJ, varying from 0 to 4.15.
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Figure 7. Numerical schlieren images for the case θCJ = 1. (a) t = 21.15; (b) 35.79. The solid
line is the locus of 95% product.

6750 × 5100 grid for θCJ = 4.15. Results of a convergence study with varying N1/2,
presented in Arienti (2002), show that the main wave features are essentially converged
in these examples when N1/2 = 22.5.

The height of the computational domain (top-to-bottom) is approximately 250 ∆1/2.
The time step is 1.1 × 10−3, corresponding to an average CFL number of 0.5 or
smaller; given a final time between 40 and 60 for the detonation front to reach the
bottom of the computational domain, at least 40 000 time steps are required to reach
simulation completion.

4.3. Case θCJ = 1

Two numerical schlieren images are displayed in figure 7. Numerical schlieren visualiz-
ation amounts to displaying the magnitude of the density gradient as a grey-scale. A
nonlinear mapping, or grey-scale shading function, is used so that density gradients
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Figure 8. (a) Density, (b) temperature, (c) pressure and (d) progress variable profiles for 5
data sets extracted at t = 35.79. Slices 1 and 5 are extracted along the plane of symmetry and
the corner wall, respectively. The remaining data are taken in the shock normal direction and
are evenly spaced along the detonation front.

varying through several orders of magnitude are still visible. In this work, the grey-
scale shading function is

ν = 0.8 exp

(
−µ

|∇ρ|
|∇ρ|max

)
, (4.1)

with µ a strictly positive amplification parameter. The grey-scale ranges from black
for ν =0 to white for ν = 1. Larger values of µ give darker images and accentuate
weak features of the flow. To provide a consistent grey-scale reference, frames in a
sequence of schlieren images, such as that in figure 7, have the same amplification
and normalization factors.

In addition to the density gradient, figure 7 also displays the locus of points where
the product mass fraction is equal to 0.95. This contour is displayed as a solid line.
The corner, on the left-hand side of each plot, is shown as a rectangular shape with
a small (not visible to the eye) rounded vertex of radius rc = 1. In each frame, only
the last portion of the inlet channel (one-fifth of the total length) is shown.

As mentioned in the previous section, a value θCJ = 1 corresponds to a reaction rate
model that is essentially insensitive to the shock velocity changes in the expansion
from the channel half-width H = 36.67. Figure 8 is a plot of density, temperature,
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Figure 9. (a) Initial location of injected particles along the corner wall and the (b) plane of
symmetry.
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Figure 10. (a) Particle paths for 10 sample particles injected along the vertical corner wall
for θCJ = 1. (b) Temperature profiles along the particle paths.

pressure and progress variable for five ‘slices’ of the computational domain at time
t = 35.79. Slices 1 and 5 are extracted along the plane of symmetry and the corner
wall, respectively. The remaining data are taken in the shock normal direction and
are evenly spaced along the detonation front (see figure 7a). In all the slices, the post-
shock pressure is almost exactly 75 % of the von Neumann value, corresponding to
a detonation velocity 0.86DCJ =7.010. This estimate is consistent with the diagram in
figure 4. Overall, the profiles in the two frames show the same dependence on η, with
the exceptions of slice 3 (dashed line) and slice 4 (dotted line) both passing through
a system of transverse shocks. No residual effects of the transverse gradient due to
the corner rarefaction are observed, and, by the shock-change equation (Fickett &
Davis 1979, p. 101), we conclude that the front is propagating as an almost cylindrical
detonation.

The receding 0.95 reaction locus in the first frame of figure 7 indicates that the
most severe reduction of reaction rate is found along the corner wall. The trajectories
of particles injected along this boundary (see figure 9a) are displayed in the space–
time diagram of figure 10(a). The temperature profiles in figure 10(b) show that all
particles ignite, even those very close to the corner. From their trajectories, it appears
that these particles are eventually pulled upward into the colder fluid at the corner
vortex. At this time, however, the fluid element has almost completely reacted, and
the decrease in temperature has no feedback to the main reaction zone.

We conclude the analysis of the case θCJ = 1 with a comment on the group of
transverse shocks shown in figure 7(b). The first of these waves, moving from the
corner to the centre of the channel, is due to reflection of the curved detonation
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Figure 11. Numerical schlieren images for the case θCJ = 4.15 at (a) t = 28.43; (b) 53.22.

front at the corner wall in the initial phase of corner turning. The reflection causes
a triple point to form at the detonation front with a contact discontinuity embedded
in the reaction zone. We found that the discontinuity in the sonic parameter acts
as a channel for the propagation of high-frequency acoustic disturbances, which are
amplified by the energy release due to chemical reaction and steepen to form new
transverse shocks. To each new shock at the detonation front corresponds a contact
discontinuity, which, in turn, acts as a propagation guide. The mechanism described
here is consistent with the propagation and amplification of high-frequency acoustic
waves in a planar ZND-CJ reaction zone described by Strehlow & Fernandes (1965)
and Barthel & Strehlow (1966). A complete discussion on this topic can be found in
Arienti (2002).

4.4. Case θCJ = 4.15

Two snapshots of the simulation, computed for θCJ =4.15, are displayed in figure 11.
The decoupling occurs just behind the head of the corner signal that sweeps across
the wave from the corner to the centre of the channel. The detonation fails completely
and there is no local re-ignition, so the main flow features appear to evolve in time,
similarly to a non-reacting shock.

Moving along the wavefront from the channel centre, we see that the wave curvature
increases up to the point where the no-flow boundary condition, generated by the wall,
causes a straight shock perpendicular to it. The transition from curved to straight front
is smooth, since the shock is immediately followed by an unsteady expansion wave.
This structure is qualitatively predicted by Whitham’s geometrical shock dynamics
applied to a non-reacting shock diffracting at a sharp corner (Whitham 1974, p. 297).
It is also observed in direct numerical simulations by Xu, Aslam & Stewart (1997)
and Helzel, Leveque & Warnecke (2000). At the junction of the curved front and the
stem adjacent to the wall, the schlieren images in figure 11 indicate a discontinuous
change of density gradient.

The steep density gradient in figure 11 marks the separation between the burnt
gases, produced before reaction quenching, and the shock-compressed (but unburnt)
reactants. This is shown in figure 12, where density, temperature, pressure and progress
variable profiles of five slices of the computational domain (at time t = 53.22) are
plotted. Slices 1 and 5 are extracted along the plane of symmetry and the corner wall,
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Figure 12. (a) Density, (b) temperature, (c) pressure and (d) progress variable profiles
for 5 data sets extracted at t =53.22.

respectively. The remaining data are taken in the direction normal to the shock and
are evenly spaced along the detonation front (see figure 11a). Behind the lead shock,
temperature and progress variable do not vary substantially from their post-shock
values, whereas density and pressure decrease similarly to what would be expected in
a blast wave. Density drops abruptly at a distance of 20 to 30∆1/2 from the shock.
At the same location, temperature and progress variable rise very rapidly to the
corresponding values of the burnt products. This distance becomes 60 ∆1/2 behind
the Mach stem at the wall (slice 5).

4.4.1. Particle analysis

We now discuss the results obtained for a selection of particles injected along the
channel plane of symmetry (figure 9b). That is the most convenient location to probe
the flow field, where the corner expansion is initially the weakest. For each particle,
data analysis starts immediately after the passage of the lead shock. Since the shock is
normal to the plane of symmetry, the simplified equation (2.13) can be used. Particle
trajectories, labelled from 1 to 10 in figure 13(a), become almost parallel to the traces
of the constant mass fraction of the product. This is an indication that the reaction
is quenched, with no change in reactant–product composition (see also the contact
discontinuity in figure 11).The temperature history along particle trajectories is plotted
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Figure 13. (a) Particle paths for ten sample particles on the plane of symmetry. Shock (thick
solid line); traces of 5 % and 95% of reaction completion (dashed lines); particle paths (thin
solid lines). (b) Temperature profiles along the particles paths.

in figure 13(b). The increase of the particle’s time to ignition as the shock strength
decreases is clearly consistent with the reaction rate dependence on temperature.

The decomposition of DT/Dt is performed for particles 1, 3, 5 and 10 and displayed
in figure 14. The plots show that the (positive) transverse divergence term is always
small. This result, also found in the analysis of the θCJ =1 and θCJ = 3.5 cases, indicates
that near the plane of symmetry, the flow is nearly cylindrical. From figure 14, we
also note that the contribution made by the curvature term to DT/Dt is negligible
for particles close to failure.

The unsteady term mainly balances curvature and transverse divergence in
figure 14(a), while the temperature variation is produced by heat release alone. Plots
similar to figure 14(a) are obtained for the case θCJ = 1. In figures 14(b) and 14(c),
the unsteady term becomes a large negative forcing factor that reduces DT/Dt below
the value due to heat release for particles 3 and 5, whose rise in temperature is well
separated from the initial shock. For particle 5, in particular, unsteadiness is initially
larger than heat release, so that immediately after the shock, the temperature decreases
instead of increasing. The large delay in ignition of particle 5 is not found for the
case θCJ = 1. This behaviour is more and more evident in the following elements of
fluid, until, by particle 10, the temperature steadily decreases after the shock, owing
to unsteadiness dominating over heat release (figure 14d). At this point, the reaction
is completely quenched.

4.5. Case θCJ = 3.5

This example shows the most interesting behaviour of all the cases examined in this
study: the detonation begins to fail at the wall, but, at some point, a re-ignition event
occurs. Numerical schlieren images (figures 15 and 16) for the case θCJ = 3.5 indicate
how complex the dynamics of the diffraction process are. As shown by figures 4 and 5,
the front evolves differently along the plane of symmetry and the wall. At the channel
centre, the shock appears never to completely decouple from the reaction zone. The
detonation speed exhibits a plateau at a speed of about 0.6DCJ, but then climbs
toward the CJ value. Conversely, the shock at the corner wall immediately detaches
from the reaction zone and maintains a speed of about 0.4DCJ until the arrival of a
re-ignition transverse wave.
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Figure 14. Terms in the reaction zone temperature (2.13) along the same particle paths as
in figure 13 for θCJ = 4.15. The particles are injected on the channel plane of symmetry.
· · ·, Lagrangian temperature; – . –, heat release; – – –, curvature; — —, transverse divergence;
– .. –, unsteadiness. The solid line is the difference between the left-hand side and the right-hand
side in (2.13), as computed from the terms above. (a) Particle 1; (b) Particle 3; (c) Particle 5;
(d) Particle 10.

From figure 15(a) to figure 15(c), the rarefaction originating at the corner reflects at
the plane of symmetry, and then sweeps downwards along the detonation front. This
further reduces the strength of the lead shock and results in a flattening of the front
at the centre of the channel. An observer moving along the wavefront from the chan-
nel centre to the corner wall would find the maximum value of pressure at the lead
shock to be immediately ahead of the reflected expansion front. As the observer
moves beyond that peak toward the corner wall, the pressure decreases again, this
time because of the effect of the first corner expansion. At time t = 17.49, the reflected
expansion appears to have lost most of its strength and, near the wavefront pressure
peak, the end reaction zone begins to approach the shock, which accelerates. At time
t = 21.15, the wavefront has acquired a very peculiar shape. It is almost flat at the
plane of symmetry, has a relatively large curvature in the centre, and is completely
decoupled at the wall. A fold or kink in the shock front is starting to form. In the
next frame, a transverse shock wave is developing from this fold and propagating
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Figure 15. Numerical schlieren images for the case θCJ = 3.5. (a) 10.17; (b) 13.83; (c) 17.49;
(d) 21.15; (e) 24.81; (f ) 28.47. The solid line is the locus of 95% product.

toward the corner wall. Figure 16 displays this further evolution, up to the reflection
of the transverse wave at the corner wall.

A close-up of the transverse wave system at t = 28.47 is shown in figure 17. The
incident shock (IS) is essentially non-reactive, while the curved Mach stem (MS)
has a much higher reaction rate. This can be seen by considering the distance of
the 95 % reaction locus (solid line in figure 17b) from the shock front. A contact
discontinuity (CD2) separates the partially reacted gas, processed by IS, from the
completely burnt products. The transverse wave (TS) extends between the two triple
points, T1 and T2, as a straight shock, and from T2 to the 95 % reaction locus as a
curved strongly reactive wave. It propagates into the partially reacted region behind
the incident shock and quickly brings the reaction to completion. The maximum value
of reactivity is found immediately behind the short stem connecting point P with T2.
In figure 17(a), this small area is above the cutoff value of the pressure contours, and
it is surrounded by the highest density of contour lines. The contact discontinuity
CD1 separates the gas that has passed through the MS from the gas processed by
the transverse shock. A relatively minor feature, a kink (K) in the Mach stem, is
also visible. The discontinuity associated with the kink terminates near point P . Grid
resolution studies by Sharpe (2001) indicate that this feature rapidly disappears in
under-resolved simulations, so its presence in the result we are showing here suggests
that the level of resolution is adequate.

It is important to point out that a transverse wave structure analogous to that
described here can also be observed with higher values of normalized activation
energy. In the case computed with θCJ =3.75 (not shown here), the mechanism
described above was found to produce a first transverse wave similar to that in
figure 17. This wave was slower and weaker than that at θCJ = 3.5 and could not
accelerate the lead shock. This is shown in figure 4, where Da decays monotonically
for θCJ = 3.75. It is, therefore, the acceleration of the shock close to the channel
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Figure 16. Numerical schlieren images for the case θCJ = 3.5. (a) 32.13; (b) 35.79; (c) 39.45;
(d) 43.11; (e) 44.94; (f ) 46.77.



Numerical study of detonation diffraction 137

(a) (b)

CD2

CD1
P

TS

T2

MS
T1

K

IS

Figure 17. Structure of the re-ignition transverse wave: (a) contours of pressure and
(b) numerical schlieren of density, at time t = 28.47. In (a), the contour lines are spaced
by the non-dimensional value 2.083 with a cutoff limit of 250 marking the pressure peak (at
445) behind the kink. The segment at the bottom left shows the length ∆1/2 in the plot scale.
The solid line in (b) is the 95% reaction completion locus.
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Figure 18. (a) Particle paths for 21 sample particles injected along the channel plane of
symmetry (figure 9b) for θCJ = 3.5. The labels 1, 10, 16, 21 indicate particles that are analysed
in terms of numerical dominant balance. (b) Temperature profiles along the particle paths.

plane of symmetry that appears as the distinctive feature of a successful near-critical
detonation diffraction. This point will be clarified in the following sections.

4.5.1. Particle analysis

From the previous description, two radically different behaviours can be identified
in the two regions near the channel plane of symmetry and the corner wall. At the
wall, the decoupling of the shock from the reaction zone persists until an external
cause, the reflection of a strong transverse shock, is able to re-ignite the mixture.
Near the channel centre, a complex wavefront dynamic results in shock folding
and eventually produces an explosion, followed by a system of transverse waves. In
both cases, local flow symmetry occurs, and the simplified equation (2.13) for the
Lagrangian temperature derivative can be used.

Lagrangian trajectories are displayed in figure 18(a) for particles that are located on
the plane of symmetry and in figure 19(a) for particles on the wall. The temperature
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Figure 19. (a) Particle paths for 20 sample particles injected along the vertical corner wall
(figure 9a) for θCJ = 3.5. The labels 1 and 10 indicate the particles that are analysed in terms
of numerical dominant balance. (b) Temperature profiles along particles paths.

readings along these paths are displayed in figures 18(b) and 19(b), respectively. Labels
indicate particles that will be further analysed in this section.

For particles moving along the channel plane of symmetry, the post-shock tem-
perature decreases, reaches a minimum, and then increases again. Likewise, the time
delay between the shock passage and the peak temperature for particle 10 is larger
by about an order of magnitude than the corresponding time for particle 1, indicating
a growth in ignition time. From particles 10 to 21, the ignition time decreases again.
These results indicate that the detonation slows down, but does not fail. Note that
the post-shock slopes of the temperature never become negative for any of the
trajectories shown in figure 18. This important observation, and the fact that DT/Dt

instead passes through zero when θCJ = 4.15, will be used later in the discussion
section.

In particles moving along the corner wall, no ignition occurs until approximately
t = 43. The post-shock temperature steadily decays from particle 1 to particle 7, has
a slight increment from particle 7 to 12, and then decreases again. Overall, the flow
field near the wall can be treated as non-reacting up to the point when ignition is
suddenly re-started by the transverse shock reflection (between figures 16d and 16e).

The decomposition of the terms in the reaction zone temperature according to
(2.13) is shown in figure 20 for particles 1, 10, 16 and 21 along the plane of symmetry
of the channel. Results for particles initially located just downstream of the head
disturbance arrival point are very similar for the cases θCJ = 3.5 and θCJ = 4.15 (see
figure 20a and figure 14a). This is expected since the activation energies in these two
cases differ by a relatively small amount. The behaviour of the particles that follow is,
however, radically different. Whereas particles 10 and 16 have much longer ignition
times, of the order of 5–10 units of time, particles that are located further downstream
again display an ignition time close to one. This reinforces the observation that for
the case θCJ = 3.5, the detonation re-couples near the channel centre, whereas for the
case θCJ = 4.15, the detonation completely decouples.

If we now examine one by one the terms appearing on the right-hand side of (2.13),
we notice that the unsteady term appears almost everywhere in the form of a negative
forcing factor, as for the case θCJ = 4.15. Overall, curvature and transverse divergence
effects play a relatively unimportant role in determining the Lagrangian derivative of
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Figure 20. Terms in the reaction zone temperature (2.13) along the same particle paths as in
figure 18(a) for the case θCJ = 3.5. The particles are injected along the plane of symmetry. . . .,
Lagrangian temperature; – . –, heat release; – – –, curvature; — —, transverse divergence; – .. –,
unsteadiness. The solid line is the difference between the left-hand side and the right-hand side
in (2.13), as computed from the terms above. (a) Particle 1; (b) Particle 10; (c) Particle 16;
(d) Particle 21.

temperature. Exceptions to this are the paths 10 and 16 (figure 20b, c), where a strong
peak in the curvature term can be observed at time t ∼= 40. At this point, however,
the flow has already reacted, and DT/Dt is almost zero.

The analysis of fluid elements along the corner wall (not shown here) leads to
results that are very similar to those observed for the case θCJ =4.15, with delayed
or no ignition occurring and temperature decrease dictated by the unsteady term.
Temperature variations are much smaller than those observed in particles moving
along the plane of symmetry until the arrival of the re-ignition transverse wave at
approximately t = 43. Further analysis after this point is not possible owing to the
presence of strong shock waves processing the unreacted fluid.

5. Discussion
In the previous section, the magnitude of the terms in the reaction zone structure

equation was examined along selected particle paths for sub-, near- and super-critical
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cases. The study focused on particle trajectories running along the plane of symmetry
of the channel and the lower wall of the corner, since these two regions show very
different wavefront dynamics in the case θCJ =3.5.

A first result of our analysis is that the contribution of the curvature and transverse
divergence terms to the Lagrangian derivative of temperature is negligible in causing
particle ignition delay. This result coincides with the findings of Eckett et al. (2000)
for the closely related case of direct initiation of spherical detonations. Thus, the
reaction zone structure equation simplifies to show the competition between energy
release rate and unsteadiness,

(1 − M2)Cp

DT

Dt
= (1 − γ M2)Qkρ(1 − Z) exp

(
−Ea

T

)

+ wη(Da − wη),t +
P,t

ρ
. (5.1)

A second result is that fluid elements that fail to ignite exhibit a negative post-shock
derivative DT/Dt . Two representative cases were shown in the previous section. In the
case θCJ = 4.15, the derivative DT/dt is negative along several Lagrangian paths after
the passage of the shock (figure 13), but when θCJ = 3.5, the derivative remains positive
at post-shock conditions, albeit very close to zero for a few particles (figure 18). To
associate the temperature change immediately after the passage of the lead shock to
the particle ignition delay, we propose the local decoupling condition,

DT/Dt |s = 0, (5.2)

as a criterion for the decoupling of the shock front from the reaction zone. Equa-
tion (5.2), evaluated at the post-shock state, s, intuitively relates the rate of post-shock
temperature increase to the ignition delay of the particle. To satisfy this condition –
introduced by Eckett et al. (2000) in the study of direct detonation initiation and
postulated by Schultz (2000) for detonation diffraction – the following equation must
be satisfied,

Qkρs exp

(
−Ea

Ts

)
= − 1(

1 − γ M2
s

)
[
wη(Dn − wη),t +

P,t

ρ

]
s

. (5.3)

Note that the right-hand side of (5.3) is a function only of γ and the shock
deceleration.

A third result is that the global criterion for diffraction failure can be reduced to a
test for detonation front decoupling at the plane of symmetry of the channel, a few
reference reaction lengths downstream of the head expansion arrival point. We call
this location the critical point. The fact that re-ignition starts from the channel centre
has been regularly observed in experimental studies on detonation diffraction (see,
for instance, Edwards et al. 1979; Moen et al. 1982).

In the strong shock limit, equation (5.3), evaluated at the plane of symmetry,
becomes

Qk exp

(
−D2

CJ

D2
ac

θCJ

)
= − 12

3 − γ

(γ − 1)2

(γ + 1)3
Dac

Ḋac
. (5.4)

Equation (5.4) points out the balance between the energy release rate, proportional to
Q k, and a term similar to kinetic energy decay. To characterize the critical detonation
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Figure 21. Shock deceleration as a function of the distance from the corner vertex,
parameterized by θCJ.

speed Dac
, we take (somewhat arbitrarily) the critical point to be such that

Dac
= 0.75DCJ, (5.5)

and propose that, if (5.4) is verified downstream of this point, the decoupling will
continue until reaction quenching. It is very difficult to relate Dac

to the dynamic
and kinetic properties of the decoupling detonation front, to the point that this term
should be considered more like a free parameter of the model. The same factor 0.75
is derived by Radulescu et al. (2003) from experiments on direct detonation initiation
as the critical value marking the onset of detonation.

To derive the critical relation between θCJ and H from (5.4), we must still model the
critical shock deceleration at the channel centre, Ḋac

. Shock deceleration depends on
the initial speed and the width of the channel, and it can be argued to be proportional
to D 2

CJ/H by dimensional arguments. By assuming that, in the sub-critical case, the
lead shock decays (at the plane of symmetry) as a cylindrical blast of initial radius
H/tan α, the relation between shock speed and curvature is Dac

= κ HDCJ/ tan α. The
shock decay at H/tan α is, therefore,

Ḋac
= −D2

CJ

H
tan α. (5.6)

The angle α is the maximum disturbance angle from the Skews’ construction (see
figure 1b). For this problem, α = 22.6◦. The shock decay computed from the numerical
simulations is plotted in figure 21 as a function of position for the three values of
θCJ, together with the estimated critical shock deceleration deduced from the blast
model. An alternative formula for Ḋac

can be derived from Whitham’s geometrical
shock dynamics (see Arienti 2002 for details) and is also shown in figure 21.

With (5.6), equation (5.4) is reduced to

Hk

DCJ

Q

D2
CJ

= exp (1.78θCJ)
9 tan α

3 − γ

(γ − 1)2

(γ + 1)3
. (5.7)

As a consistency check, we verify that substitution of the values of α, Q, k, H , DCJ

and γ leads to θCJ c
= 4.0. This value is close to the actual critical reduced activation

energy. From figure 4, we see that θCJ c
is between 3.5 (success) and 3.75 (failure) when

H = 36.67.
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6. Conclusions
In this work, we have identified modes of detonation diffraction that depend on

the activation energy of a single-step irreversible Arrhenius reaction model. For the
fixed value of gap half-width, H = 36.67, we found three regimes of diffraction that
resemble the super-, sub- and near-critical diffraction observed in experiments. Then,
we extended the technique used by Eckett et al. (2000) to record the time derivative
of temperature along the paths of particles that are close to ignition failure. We
found that large ignition delays, and ultimately, local decoupling of the shock front
from the reaction zone occur if the Lagrangian derivative of temperature vanishes
immediately after the passage of the shock. We identified this condition, when flow
field unsteadiness (as seen by the fluid particle) balances the rate of the energy release,
as the critical condition for a failing detonation diffraction.

The importance of flow unsteadiness in the reaction zone structure equation is
more apparent when comparing measured values of detonation speed and curvature
with the Dn–κ diagram derived from asymptotic quasi-steady quasi-one-dimensional
theory (Stewart & Bdzil 1988). We found that, in the case θCJ = 1, the measured front
curvature and detonation speed approach the asymptotic Dn–κ values only when the
wavefront has moved past a distance of the order of 6H from the corner. In the case
θCJ = 3.5, we did not observe a quasi-steady state before simulation termination. An
even clearer indication of flow unsteadiness is provided by the maximum measured
front curvature at the channel centre in figure 6. In the near-critical case θCJ = 3.5,
immediately after the arrival of the corner disturbance, front curvature rapidly reaches
a value ten times larger than the maximum curvature allowed by a cylindrical steady-
state detonation with the same activation energy. Even with this large value of
detonation curvature, we found that the large-scale features of the wavefront can be
considered quasi-one-dimensional. This can be seen in figure 6, where the minimum
measured wavefront radius of curvature (at the channel centre), 1/κa >H/4.1 = 9.1,
is sufficiently larger than unity.

In summary, our simulations indicate that a diffracting detonation wavefront
is not insulated from transverse perturbations due to unsteady rarefaction waves.
This appears in the propagation angle of the head disturbance with respect to the
undisturbed front and, when local re-ignition takes place, in the complex interaction
of the reflected expansion front with the partially decoupling detonation structure. In
fact, sonic conditions are not reached at the end of the reaction zone for a relatively
long transient, even in cases where detonation transmission is successful. This limits
the applicability of the quasi-steady model by Stewart & Bdzil (1988) when studying
the critical diameter problem for mixtures whose reaction rate strongly depends on
temperature. In the case of sub-critical diffractions, our simulations do not indicate
any direct role played by front curvature. Rather, unsteadiness, due to deceleration
of the lead shock, is found to be the dominant negative forcing factor that drives the
ignition delay. Our conclusions disagree with the global failure mechanism proposed
by Lee (1996) for mixtures with relatively small activation energies, as this mechanism
postulates the existence of a critical curvature to explain detonation failure.

Our work addresses the purely gasdynamic quenching mechanisms, since the
detonation cellular structure was not treated in the present simulations. The parameter
range and initial conditions were chosen deliberately so that cellular structure was
initially suppressed. The decision to carry out the computations without cellular
structure was taken to facilitate shock tracking and the order-of-magnitude analysis
along particle paths. Clearly, the result obtained from this analysis depends, in part,
on this simplification.
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Our model is also limited to the description of a system governed by very simple
reaction kinetics. It is an open issue whether the current results provide a lower
bound for critical diffraction conditions in the presence of cellular structure and
with a more detailed reaction mechanism. This is a significant extension of the
present study, and we have left it for future investigation. Since the present parallel
computations involved week-long simulations and stretched to a limit the capability
of analysing large volumes of data, we anticipate that these investigations will require
implementation of parallel adaptive mesh refinement algorithms and chemical kinetics
reduction techniques.

Even if the empirical relationships between cell detonation width and critical tube
diameter (or gap width, in two dimensions) are not applicable in the present case,
studies by Westbrook & Urtiew (1983), Moen et al. (1982, 1984), and Schultz (2000)
have demonstrated that equally reasonable correlations exist between critical tube
diameter, reaction zone length and activation energy. At present, there are no reliable
methods for computing cell width, except for mixtures with very weak instabilities,
but some progress can be made by considering the role of the reaction zone structure
directly. Starting from similar considerations of the role played by unsteadiness,
Schultz (2000) was successful in connecting the available experimental data with
a critical model of spherical detonation diffraction leading to an equation similar
to (5.7).

This work was carried out at the Caltech ASC ‘Centre for Simulation of Dynamic
Response of Materials’ and funded by Contract B341492 under DOE Contract
W-7405-ENG-48.

Appendix A. Shock-tracking algorithm
Detonation speed, shock acceleration and front curvature of the detonation wave

are reconstructed in a post-processing step from shock-tracking data collected during
the simulation. Shock tracking is performed in a non-intrusive step at each time
integration after updating the flow field. The tracking algorithm consists of a sequence
of sweeps of the current solution in the x and y coordinate directions. For each sweep,
the position of the first peak of density that emerges from the undisturbed flow is
searched. The shock location is taken as the position of the flex point in the numerical
representation of the shock. The flex is defined as the midpoint between the peak
value of density and the undisturbed value. Its position is estimated as a linear
interpolation between the two grid points that bracket this value.

In the post-processing step at the end of the simulation, quantities such as the
normal detonation velocity, Dn, and the local curvature, κ , are evaluated through
finite-difference approximations for spatial and temporal derivatives of the shock
position. For instance, the curvature along the channel plane of symmetry requires
the evaluation of a second-order derivative, which we compute as a centred difference
scheme,

κa = 2
x̄m−w − x̄m

w2�y2
+ Cw2�y2, (A 1)

where C depends on the truncation error. In the equation above, we skipped w grid
points in both directions from ym, and then used the symmetry condition for the
tracked shock positions x̄m+w = x̄m−w . A similar formula is used for evaluating the
curvature along the corner wall.
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Particular care is required to control the error associated with the approximation of
derivatives of the shock position. Errors due to linear interpolation at the flex point in
the shock profile and to high-frequency oscillations of the post-shock state (occurring
when the wavefront crosses the interface between computational cells) appear in the
numerator of (A 1). Since these errors can be of the same order as the grid spacing,
a naive implementation of this formula may not converge under grid refinement.
Aslam, Bdzil & Hill (1998) raised the issue and suggested increasing the number of
skipped points w with grid refinement in such a way that the difference in (A 1) is
never too small compared with the position error. In a convergence study in Arienti
(2002), different strategies for choosing the points for differentiation are compared.
Following that study, in the present work, we present results where w = 16 in (A 1)
for the coarse-resolution study and w = 21 for the high-resolution study.

Appendix B. Lagrangian particles integration
Integration of the particle trajectory is performed with a predictor–corrector method

in the form of an Adams–Bashforth predictor (P) followed by an Adams–Moulton
corrector (C). Only one PC iteration is performed. The overall scheme is of the PECE
type, where step E indicates the update of the derivative part from the last computed
value (in Press et al. 1992, pp. 747–751). Step P is computed before advancing the
Euler equations by a time step, and step C is computed after. A master–slave strategy
(see, for instance, Wilkinson & Allen 1999) is implemented to track particles that are
transported from one processor sub-domain to the next.

Particle data analysis starts only after the first peak value in particle pressure data.
Lagrangian derivatives are directly computed by finite-difference operations on the
particle data stream, whereas partial time derivatives (in the intrinsic reference frame)
are available only indirectly from the relation

∂/∂t |ξ,η = D/Dt − wη∂/∂η − wξ∂/∂ξ. (B 1)

The spatial gradients in η and ξ are obtained by coordinate transformation from the
stored gradients in x and y. When the partial time derivative is small compared to
D/Dt (a limit case is a ZND detonation where ∂/∂t |ξ,η is identically zero), equation
(B 1) is prone to cancellation errors. Since the partial time derivatives are combined
in the unsteady term as

wη(Dn − wη),t +
P,t

ρ
,

an alternative solution is to evaluate this entire term by rearranging momentum and
mass conservation equations. Under conditions of symmetry, the result

wη(Ds − wη),t +
P,t

ρ
=

1

ρ

(
DP

Dt
− w2

η

Dρ

Dt

)
+ w2

η

κs(Ds − wη)

1 − ηκs

+ w2
η

wξ,ξ

1 − ηκs

(B 2)

is numerically easier to treat and is, therefore, used in (2.13) to evaluate the unsteady
terms.
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